Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Sci Data ; 11(1): 361, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600091

Species assemblage composition of marine microfossils offers the possibility to investigate ecological and climatological change on time scales inaccessible using conventional observations. Planktonic foraminifera - calcareous zooplankton - have an excellent fossil record and are used extensively in palaeoecology and palaeoceanography. During the Last Glacial Maximum (LGM; 19,000 - 23,000 years ago), the climate was in a radically different state. This period is therefore a key target to investigate climate and biodiversity under different conditions than today. Studying LGM climate and ecosystems indeed has a long history, yet the most recent global synthesis of planktonic foraminifera assemblage composition is now nearly two decades old. Here we present the ForCenS-LGM dataset with 2,365 species assemblage samples collected using standardised methods and with harmonised taxonomy. The data originate from marine sediments from 664 sites and present a more than 50% increase in coverage compared to previous work. The taxonomy is compatible with the most recent global core top dataset, enabling direct investigation of temporal changes in foraminifera biogeography and facilitating seawater temperature reconstructions.


Foraminifera , Fossils , Zooplankton , Animals , Biodiversity , Ecosystem
2.
Nat Commun ; 13(1): 4217, 2022 07 21.
Article En | MEDLINE | ID: mdl-35864111

Although the global environmental impact of Laurentide Ice-Sheet destabilizations on glacial climate during Heinrich Events is well-documented, the mechanism driving these ice-sheet instabilities remains elusive. Here we report foraminifera-based subsurface (~150 m water depth) ocean temperature and salinity reconstructions from a sediment core collected in the western subpolar North Atlantic, showing a consistent pattern of rapid subsurface ocean warming preceding the transition into each Heinrich Event identified in the same core of the last 27,000 years. These results provide the first solid evidence for the massive accumulation of ocean heat near the critical depth to trigger melting of marine-terminating portions of the Laurentide Ice Sheet around Labrador Sea followed by Heinrich Events. The repeated build-up of a subsurface heat reservoir in the subpolar Atlantic closely corresponds to times of weakened Atlantic Meridional Overturning Circulation, indicating a precursor role of ocean circulation changes for initiating abrupt ice-sheet instabilities during Heinrich Events. We infer that a weaker ocean circulation in future may result in accelerated interior-ocean warming of the subpolar Atlantic, which could be critical for the stability of modern, marine-terminating Arctic glaciers and the freshwater budget of the North Atlantic.


Foraminifera , Water Movements , Climate , Ice Cover , Oceans and Seas
...